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Abstract—Coupled tensor decomposition has become a popular tech-
nique for the simultaneous analysis of multiblock tensors in recent years.
To achieve group analysis of multiblock tensors, we propose a fast
double-coupled nonnegative Canonical Polyadic decomposition (FDC-
NCPD) algorithm. It enables the simultaneous extraction of common
components and individual components. In addition, its time-consumption
is greatly reduced without compromising the decomposition quality
when handling large-scale problems. Simulation results demonstrate the
superior performance of the proposed algorithm.

I. INTRODUCTION

Tensor decomposition has been successfully applied to an ensemble
of disciplines including blind source separation, signal processing
and neuroscience [1]–[3]. For instance, in EEG data analysis, spatial,
temporal and spectral information can be simultaneously considered
via tensor decomposition, which in turn provides solutions with
convincing physiological or pathological interpretations [3]. However,
when it comes to joint analysis of multi-block tensor data, such
as multiset or multimodal neurophysiological data fusion [4], con-
ventional methods meet challenges in utilizing coupled information
across tensors. Joint analysis of tensors from different samples can
potentially reveal underlying structures and inner-relationships among
data [5] [6]. Furthermore, joint analysis can take full advantage of
prior information to improve the accuracy and stability of solutions
[7]. Therefore, increasing recognition of joint analysis makes coupled
tensor decomposition more extensively utilized.

Given the ongoing EEG collected multiple subjects under the same
stimulus, it is reasonable to expect identical or highly correlated
stimuluselicited information among subjects, which can be regarded
as a prerequisite for applying coupled tensor decomposition. How-
ever, the inner-component similarity among subjects has rarely been
considered in previous methods [8] [9]. Meanwhile, the time con-
sumption load would go extremely heavy due to the high-dimensional
and nonnegative nature of ongoing EEG data and considering shared
information generally exists in spatial and spectral modes, we propose
a fast double-coupled nonnegative Canonical Polyadic Decomposition
(FDC-NCPD) algorithm. This algorithm is based on linked CP tensor
decomposition (LCPTD) model [10] and fast Hierarchical Alternating
Least Squares (Fast-HALS) algorithm [11].

II. FDC-NCPD ALGORITHM

To achieve coupled tensor decomposition, squared Euclidean
divergence-based cost function is selected as:
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learning rule of u(n,s)

r can be formulated as follows:
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where the scaling coefficients γ(n,s)
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where ξ
(s)

(n) = (U (s)TU (s))~ � (U (n,s)TU (n,s)). ‘~’ and ‘�’
are denoted as element-wise multiplication and division. In order
to obtain the nonnegative components, a simple “half-rectifying”
nonlinear projection is applied as u

(n,s)
r ← ‖u(n,s)

r ‖+ after (2).
These R stages are updated alternatively one after another until
convergence.

III. EXPERIMENTS AND RESULTS

Exp1. Validation of synthetic data. Fig. 1 illustrates execution
time against the dimensionality of tensors averaged over 30 runs.
SNR = 20 dB, R = 4n, L1 = L2 = 2n, S = 10. Fig. 2 illustrates
averagedd decomposition performance of four algorithms [10]–[12]
from 20 runs under SNRs from -5 dB to 20 dB. I1 = 40, I2 =
50, I3 = 60, R = 30, L1 = L2 = 20 and S = 10. FDC-NCPD
algorithm could greatly reduce the execution time while keeping
excellent decomposition quality. This experiment also verified that
joint/coupled analysis can effectively improve the decomposition
accuracy.

Exp2. Application of ongoing EEG data. We apply the FDC-
NCPD algorithm to ongoing EEG data, collected from 14 subjects
while listening to an 8.5-minute long tango music. The details of
data collection, data preprocessing and related infromation can be
found in [9]. Through short-time Fourier transform (STFT), 14 third-
order tensors are formulated with size of 64× 146× 510 (64 spatial
channels, 146 frequency bins (1∼30Hz) and 510 temporal samples
from EEG data of each subject). The results in Fig. 3 and Fig. 4
illustrate FDC-NCPD algorithm can efficiently and reliably explore
the underlying brain activities under naturalistic and continuous
musical stimulus.

IV. CONCLUSION

We introduced the Fast-HALS algorithm to LCPTD model and pro-
posed the FDC-NCPD algorithm, in which the common components,
individual components can be extracted simultaneously. Simulation
experiments of synthetic and real-world data verified the performance
of proposed algorithm.
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Fig. 1. Averaged execution time versus dimensionality of tensors
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Fig. 2. Averaged PI performance versus SNR
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Fig. 3. Correlation coefficients of internal components of clusters in 10 runs
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Fig. 4. Averaged topographies of interest clusters from 10 runs
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